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Summary. From the consideration of the expressions of 
the mean and of the variances among k-parent synthetics, 
it is possible, in the absence of epistasis, to give an alge- 
braic determination of the optimum number of parents to 
include in a synthetic. The knowledge of four components 
of variance of inbred populations is necessary. Such 
components can be replaced by four simple statistics for 
the plant breeder: variances of general and specific 
combining abilities, variance among $1 families from the 
parents, and covariance between S 1 value and general 
combining ability (GCA). A numerical study shows that 
this optimum is rather broad for a number of parents 
greater than four. As expected, the optimum tends to be 
higher for greater inbreeding depression. With inbreeding 
depression greater than 0.30, the maximum gain, in com- 
parison to the random mating population with realistic 
selection intensity, would be less than 5%. In such a 
situation it will be better to use as synthetic the popula- 
tion improved by recurrent selection. 
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The optimum will be determined algebraically, and it 
will be studied numerically to determine whether its pro- 
file is sharp or flat. Some consequences on the level of 
genetic advance from the development of synthetics will 
also be discussed. 

Algebraic determination of the optimum 

Consider the distribution of the genetic values of all 
k-parent synthetics. The values of the best varieties can be 
written: 

Syn Max = #s + i as (1) 

where #s and a~ are, respectively, the mean and the genet- 
ic variance of the distribution of all k-parent synthetics, 
and i is the intensity of selection among synthetics. 

Because the mean #s increases and the variance a~ 
decreases with an increasing number of parents, this sug- 
gests that an optimum number may exist. To solve this 
problem, two approaches of the mean and of variance 
among synthetics will be presented. 

Introduction 

From different experimental and theoretical studies, it is 
clear that there is generally an optimum number of par- 
ents for synthetic varieties (see, e.g., Kinman and Sprague 
1945; Wricke and Weber 1978). However, a general theo- 
retical demonstration of the optimum number of parents 
has never been given. From use of the expressions of 
mean and variances among synthetics, a simple approach 
to this problem is given. 

First approach 

From the studies on means (restricting the approach on 
diploids), Gallais (1967) showed that with noninbred par- 
ents and in the absence of epistasis 

1 
Ps = # 4- ~ D o ,  (2) 

where p is the mean of the random mating population 
and Do is the maximum inbreeding depression: Do = 
# L -  #, #L being the mean of all lines that can be derived 
of the population; Do is negative. 
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In the absence of epistasis, the variance among syn- 
thetics can be written (Gallais 1974): 

2 F2k- l - ]  2 
4 o-o ; (3) 

ag is the dominance variance in the random mating pop- 
ulation. From Gallais (1979) and Gallais and Wright 
0979) 

a~, = k 2 e(s. ~ ) 

with sCq being the additive effect for synthetic value: 

s~i = {~, + (1/4 k) [ f lu-  E (flu)]}/k, (4) 

where cq is the classical additive effect, and flu is the 
residue for dominance in the homozygous genotype A~AI. 

In the case of biallelism (B, b; p, q) using the notations 
of Falconer (1960), the additive effect for synthetic value 
of the allele B could be written: 

as already shown by Wright (1974). 
Then, from Eq. (4) 

E (sa~) = {E(~ 2 ) + (1/16 k 2) E [f lu-  E (flu)] 2 
+ 0 /2  k) F~ (~, ~ . ) } / k  ~ (5) 

a 2 - 2 k E (s"{) = (l/k) a~ + (1/k z) o-aDo + (1/8 k 3) o-~o A k - -  

where o-2 o and O-AD o are components of variances that 
appear under inbreeding (Gillois 1964; Harris 1964). 

The variance among synthetics, therefore, is a func- 
tion of the number of parents and of components of 
variance of an inbred population. 

To maximize the value of the best synthetics, we have 
to maximize Eq. (1) when the number of parents is con- 
sidered as variable. Therefore, we have to differentiate 
Eq. (1) with respect to k: 

d (Syn) d (#s) d (o-s) 
+ i - -  

d (k) d (k) d (k) 

d (#s) = (1/2k 2) (P--PL) (6) 
d (k) 

The derivative of as is complex, but can be computed. 
The problem is to know the components of variance of an 
inbred population [a], o-g, a2o, aAOo]. The component 
can be estimated from a two-way mating design with 
self-fertilization of parents (Gallais 1988). If the design is 
a dialM (or a series of disconnected dialMs), it is possible 
to formulate directly the variances in terms easy to under- 
stand by the breeder; this leads us to the second approach 
for the optimum. 

Second approach 

The structure of a synthetic at equilibrium can be consid- 
ered as equivalent to the structure given by the complete 
diallel table among the parents. According to the well- 
known Sewall Wright formula (Wright 1922), the value of 
a synthetic is: 

k-Syn = (l/k) S~ + (1 - I/k) C, (7) 

where S~ is the mean of St progenies of the parents, and 
C is the mean of all crosses among the parents. The 
variance among k-parent synthetics is (Gallais 1975) 

var (k-Syn) = (l/k 2) var S~ + 2 (l/k) (1 - 1/k) coy $1, 

C + ( 1 - 1 / k )  2 var C 

with the following relationships: 

vat $1 = (l/k) o-sa, (as2 �9 genetic variance among $1) 

coy ($1, C) = (2/k) Crs~ o, (as~g: covariance between S 1 
value and GCA) 

4 o-02 + 2 2 (o-2 : variance of GCA, 
var C = ~ ~ as,  2. variance of SCA) 

a s �9 

where GCA and SCA are the general and specific 
combining abilities of the parents, respectively. Hence, 

F 4 ( k - 1 ) ]  a 
var (k-Syn) -- (l/k 3) as21 + / - V - J  $i, 

+ [4 (k -1 )21  a~ + F2(k-1)~ a 2 
k ~ / k ~ J " (8) 

Without epistasis and with noninbred parents: 

a~ = .2as1 +(1/4) ag ,  

where 

a 2 = a~ + (1/2) o-aDo +(1/8) ago A s  t 

% .  = (1/2) o-~, + (1/8) o-A~o, 

o-~2 = (1/4) o-,~ 

and 
2 o-, =(1/4) ag. 

Insertion of these values in Eq. (8) gives Eq. (3). 
2 2 Thus, knowing a21, as1 a, o-g, and o-~, it will be possible 

to compute the derivative of var (k-Syn) in terms of k. 
As the mean of the k-parent synthetic can be predicted 

by 

E (k-Syn) = (l/k) E (S-~) + (1 - 1/k) E (C), 

with E ($1) and E (C) being replaced by their estimators, 
the optimum will be determined by the use of Eq. (6). 

Note that 

E ($1) = # + 1/2 D o ,  



and 

e(Q =~. 
2 is small in comparison In Eq. (8) the coefficient of G 

2 2 2. if a 2 is small in comparison to %,  G can to that of %,  
be neglected. In this case it is only necessary to know 
three parameters: as2, as:0, and a 2 . These parameters can 
be easily estimated by the simultaneous study for each 
evaluated parent of the population of $1 and the GCA 
value (from to-pcross). In this case, prediction of synthetic 
value from S~ and GCA is equivalent to the prediction 
from general synthesizing ability (GSA) (Gallais 1979). 

These two approaches for determination of the opti- 
mum will not show how this optimum is pronounced, 
whether it is broad or narrow. The numerical study of the 
expected value of the best synthetic in terms of the num- 
ber of parents is the best approach to study this problem. 

Numerical study of the value of the best synthetics 

To develop a numerical study of the optimum, Eq. (8) is 
transformed by the introduction of parameters, which 
allows the suppression of the scale of measurement: 

0 = the genetic correlation between Sa value and GCA, 
q2 2 2 

~-- t T S J t 7  C 

2 2 2 g2 = 2%/(2% +G) 

d = ( ~ - U s ~ ) / u  

The results: 

var (k-Syn) = a 2 {(1/k 3) qZ + [4 (k -  1)] [ ~ j  q 9 x / i /2  (9) 
% 

[-2(k-1)27 2 + [  2 ( k - l ) ]  (1-gZ)} 

+L ~ ]g L ~ 3  
=a~v~ 

E (k-Syn) = # [1 -d/k] 

Thus, Eq. (1) of the best synthetics can be written: 

Syn Max =/~ [(1 -d /k)+ihc  xf~k], (10) 

where c=  Oc/p is the genetic coefficient of variation for 
hybrids, and h is the square root of the heritability among 
synthetics (if we consider the distribution of phenotypic 
values of synthetics instead of that of genetic values). 

In Eq. (10), only # is dependent on the scale of mea- 
surement. The other parameters are relative parameters 
[4, c, d, m, q2, g2]  o r  fixed by the breeder [i, k]. Note that 
it is only necessary to study the combined effect of the 
product of three parameters (i, h, c). In addition to this 
product, it is only necessary to introduce d, q2, 92, 4. 
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Realistic range of parameters 

A realistic rate of selection for a plant breeder is between 
1% and 10%, giving a selection intensity between 2.66 
and 1.75. However, the selection intensity to consider 
depends on the number of constituents: it decreases when 
the number of constituents increases. With selection on 
general synthesizing ability and with n parents selected 
among N candidates, the rate of selection will be of n/N. 
The resulting selection intensity has been considered in a 
first approximation as selection intensity among synthet- 
ics, with 100 and 300 candidates for selection. 

Product i. h �9 c. The heritability h 2 is defined for means of 
varieties. With a low heritability at the individual level 
(0.10), such a heritability will be relatively high (at least 
0.50 with three replications). The case where h2= 1 is 
interesting to consider, because it corresponds to the 
study with genetic values of synthetics. The genetic coef- 
ficient of variation for hybrids, according to data on corn 
(Zea mays L.) (Hallauer and Miranda 1981), can be con- 
sidered to be between 0.05 and 0.10. Hence, a realistic 
range of the product i - h �9 c is [0.04; 0.266]. 

d. d is the relative inbreeding depression from So to S,. In 
the absence of epistasis, such a depression is half the 
maximum inbreeding depression. If the maximum in- 
breeding depression is of the order of 0.70 (as is observed 
in corn), d will be 0.35. Therefore, a realistic range for d 
will be [0.10, 0.40]. 

4- Q is the genetic correlation between the S 1 value and the 
GCA. With strict additivity such a correlation will be 1 
and, in this case, there will be no inbreeding depression. 
The presence of dominance and overdominance (or its 
equivalent) will decrease such a correlation. A value of 
0.50 is acceptable for different situations (Sampoux et al. 
1989). 

a 2  ~ 2 q2. qZ is the ratio s,/Oc. With strict additivity this ratio 
will be 1. The examination of this ratio, in the case of 
biallelism (Gallais 1989) from partial to complete domi- 
nance, shows that this ratio is near I for high and low 
frequencies of the favorable gene and about 0.60 for inter- 
mediate values, although the variation is not symmetri- 
cal. It is necessary to conceive overdominance to have 
lower ratios. 

2 in the variance 92. 92 is the relative importance of ag 
among crosses. With additivity, this ratio will be 1. If we 
accept the same contribution of dominance as for additiv- 
ity, this ratio will be 0.5. 

Clearly all combinations old, 0, q2, 92 are not possible 
because such parameters cannot be fixed independently. 
This is mainly true for extreme situations; e.g., with addi- 
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tivity d = 0, 0 = 1, qZ= 1, g2= 1. However, it will be as- 
sumed in the general case that for the range considered, 
the genetic situation is sufficiently complex to authorize 
independence among these parameters. 

Results  

The type of results achieved is shown in Fig. 1. First, 
consider the general effects of the parameters 0, q2 and gZ. 
The effect of the correlation between the S 1 value and 
GCA, between 0.50 and 0.80, is low (less than 1% of the 
value of the synthetics in the best situations, i.e., with high 
heritability, high ratios q2 and g2). There is no effect for 
k = 1. The effect of the ratio g2, the proportion of GCA 
variance, is also relatively low (<0.01) and tends to be 
maximum for the optimum number of parents; there is no 
effect for k = 1. The effect of the ratio q2 is the greater for 
k = 1 (up to 0.04) but it vanishes for k > 2. Therefore, the 
main "genetic" parameters are inbreeding depression, 
heritability, and the genetic coefficient of variation. Such 
a result can be directly derived by the discussion of Eqs. 
(8) and (9). 

As far as the optimum is concerned, what is striking 
is its aspect: it is generally very flat. The optimum tends 
to be more pronounced for a low ratio q2_ 2 2 - % / a c  (e.g., 
0.5 instead of 0.9). However if such a low value can be 
accepted with strong inbreeding depression, it is more 
difficult to accept for low inbreeding depression. Obvi- 
ously, with sufficient inbreeding depression, the value of 
the best synthetics increases by increasing the number of 
parents from I to 4-6.  But what is remarkable is that the 
increase of the number of parents further than the opti- 
mum leads to a very slow decrease in the performance of 

the best synthetics. Between 6 and 10 parents, the varia- 
tion in the performance of the best synthetics is small. 
This could explain why it is difficult to reach a clear 
conclusion about the optimum number from the experi- 
mental results. 

As expected, the optimum (k opt) is higher for greater 
inbreeding depression (k opt = 2 -  3 for d = 0.10; k opt = 
4 - 5  for d=0.20; and k o p t = 1 0 - 1 5  for d--0.40). At the 
limit, with no inbreeding depression, the optimum will be 
1, and the best variety will be a line. Obviously the level 
of the optimum, for a given inbreeding depression, in- 
creases with increasing selection intensity, heritabilities, 
and genetic coefficient of variation. 

Another result, less encouraging for the plant breeder, 
relates to the level of the best synthetics in comparison to 
the mean of the random mating population. With in- 
breeding depression of 0.30 to 0.40, the maximum gain 
possible is less than 5%. For a depression of only 0.20, the 
gain is about 10%. Therefore, with strong inbreeding 
depression, there is little to gain by the use of the variance 
among synthetics (or it will be necessary to increase un- 
realistically the selection intensity). Thus, in such a situa- 
tion it will be more efficient to increase first the tolerance 
to inbreeding of the breeding population by recurrent 
selection, and to use the population itself as a synthetic. 
However, a synthetic with a narrower base could be jus- 
tified to increase genetic advance for less complex charac- 
ters such as, e.g., disease resistance. Such a theoretical 
result could be another explanation for the fact that in 
forage grasses where synthetics are traditionally devel- 
oped, the genetic advance for yield has been very low. 

The relatively low genetic advance is mainly because 
of the strong inbreeding depression, which inhibits the 
expected gain by the use of the variance among synthet- 
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Fig. 1 a and b. Effect of the number of parents on the relative performance of the best synthetics according to genetic situations 
(numbered from t to 12, defined in Table 1). a for N=250; b for N=100 
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ics. Fur thermore ,  the examinat ion of the variance among 
synthetics in the case of biallelism (Gallais 1989) shows 

that  the variance among synthetics is always very low in 
comparison to the variance among single cross hybrids. 
Even with a low inbreeding depression and with the op- 
t imum number  of parents, the genetic gain at the level of 
k-parent  synthetics will be less than the genetic gain 
among lines or among single crosses. Synthetics must  be 
considered either as a t ransi tory type of variety, or as a 
means to use genetic variat ion of oligogenic traits with- 
out  improvement  of the more complex traits, in spite of 
the breeding effort to improve them. 
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